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Abstract

The effects of microcrack interaction on the failure behavior of materials present one problem of considerable in-

terest in micromechanics, which has been extensively argued but has not been resolved as yet. In the present paper, a

simple and effective method is presented based on the concept of the effective field to analyze the interaction of

microcracks of a large number or of a high density. To determine the stress intensity factors of a microcrack embedded

in a solid containing numerous or even countless microcracks, the solid is divided into two regions. The interaction of

microcracks in a circular or elliptical region around the considered microcrack is calculated directly by using Kacha-

nov�s micromechanics method, while the influence of all other microcracks is reflected by modifying the stress applied in

the far field. Both the cases of tensile and compressive loading are considered. This simplified scheme may yield an

estimate for stress intensity factors of satisfactory accuracy, and therefore provide a potential tool for elucidating some

phenomena of material failure associated with microcracking. As two of its various promising applications, the above

scheme is employed to investigate the size effects of material strength due to stochastic distribution of interacting

microcracks and to calculate the effective elastic moduli of elastic solids containing distributed microcracks. Some

conventional micromechanics methods for estimating the effective moduli of microcracked materials are evaluated by

comparing with the numerical results. Only two-dimensional problems have been considered here, though the three-

dimensional extension of the present method is of greater interest.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many phenomena of deformation and failure of brittle or quasi-brittle solids are associated with in-

teraction and propagation of disordered microcracks. The problem of microcrack interaction has been

extensively investigated over the past decades but has not been resolved yet. Such transport properties as
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the effective elastic moduli and thermal conductivities of microcracked solids are closely related to the

statistically averaged, zeroth- and first-order effects of microcrack interaction. However, such failure-

related properties as the load-bearing capacity and the strain-softening behavior are sensitive to the sizes,

locations and orientations of individual microcracks, namely, higher-order effects of microcrack interac-
tion. On one hand, therefore, some effective medium or effective field methods, e.g. the self-consistent

method (SCM) (Budiansky and O�Connell, 1976; Horii and Nemat-Nasser, 1983), the generalized self-

consistent method (GSCM) (Christensen and Lo, 1979; Huang et al., 1994, 1996), the differential method

(DM) (Zimmerman, 1985; Hashin, 1988), Mori–Tanaka method (MTM) (Mori and Tanaka, 1973; Ben-

veniste, 1986) and the interactive direct-derivation (IDD) method (Zheng and Du, 1997, 2001), have been

established for estimating the impacts of microcrack interaction on the effective elastic moduli of micro-

cracked solids (Kachanov, 1993; Krajcinovic, 1996; Feng and Yu, 2002). These methods, with few ex-

ceptions, omit the concrete positions and orientations of individual microcracks. To gain an insight into the
failure behavior of brittle solids, on the other hand, direct interaction of microcracks has to be taken into

account.

Micromechanical discrete methods and finite element analysis may provide the stress intensity factors

(SIFs) of multiple interacting microcracks of a specified array. Owing to the difficulty in obtaining an

analytical solution of such problems, some approximate numerical schemes have been developed. Among

them, several typical examples are the method of pseudo-tractions (Hori and Nemat-Nasser, 1987; Ka-

chanov, 1987), the complex potential method (Gong and Horii, 1989), the double potential method

(Chudnovsky et al., 1987), and the weight function method (Bueckner, 1975). Literature reviews on the
calculation of microcrack interaction have been given by Karihaloo (1979), Kachanov (1993), Chen (1995),

Feng and Yu (2002), Petrova et al. (2000), and many others. The problem of interaction of multiple mi-

crocracks is often reduced to a set of integral equations, which can be solved by the series expansion

method, perturbation method, boundary element method, collocation method, and some other approxi-

mate methods. In addition, actual problems of crack interaction are generally three-dimensional (3D), but

due to the complexity of calculation, most investigations on this subject are still limited to two-dimensional

(2D) crack arrays.

Theoretically, the above mentioned methods can be used in the case of numerous microcracks.
However, the number of equations increases very rapidly with the increase in the number of microcracks.

The cumbersome numerical computation limits the application of these methods to only those situations

where the number of microcracks is relatively small (see, e.g., Kachanov, 1987, 1993; Huang et al., 1994,

1996; Zhan et al., 1999; Seelig et al., 2000; Shen and Yi, 2001). To date, there seems to be no method yet

available for calculating the interaction of microcracks of a large number, as in most cases of actual

materials. It seems straightforward to calculate the SIFs of a microcrack by considering merely its

neighboring microcracks and omitting those far from it. Unfortunately, such a simplification is inap-

propriate, especially in the case of higher concentration of microcracks, as will be illustrated in the next
section.

Therefore, an attempt is made in this paper to present a novel method to calculate the interaction of

numerous disordered microcracks. Recently, Zheng and Du (1997, 2001) developed the IDD method for

estimating the elastic moduli of heterogeneous materials with microdefect interaction effects in a skillful

and effective manner. Feng (2001) elucidated the correspondence relation between the effective medium

method and the effective field method in estimation of elastic moduli. Combining Kachanov�s method

for calculating the direct interaction of microcracks in a local region with the concept of the effective

stress field in the global sense, a simple method is suggested in the present paper for analyzing the strong
interaction of distributed microcracks of a large number. Both the cases of tension and compression

are considered. To illustrate its various applications, this global/local method is used to examine the

size effects of material strength and to calculate the effective elastic moduli of microcrack-weakened

materials.
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2. Effective field-subregion model

2.1. Model

Consider a plate S subjected to a uniform stress r1 in the far field and weakened by a large number of

statistically distributed, planar microcracks, as shown in Fig. 1(a). First, let us consider a microcrack in it,

say the ath one, whose length is denoted as 2la. Refer to a global Cartesian coordinate system ðO� x1x2Þ
and a local system ðO� x01x

0
2Þ with the x02-axis aligned with the normal na of this microcrack, as shown in

Fig. 2. The microcrack orientation is then expressible in terms of an angle, ha. Assume that the statistical

distribution of the orientations and sizes of all microcracks satisfies a probability density distribution

function, pðl; hÞ.
It is very difficult or even impossible to calculate the exact SIFs of the ath microcrack, which interacts

with all the other, numerous or even countless, microcracks. Therefore, some approximations or simpli-

fications are necessary even when numerical methods are adopted. Evidently, the local stress fields around

the ath microcrack are sensitive to the positions, orientations and sizes of the neighboring microcracks

around it. In fact, it is generally unnecessary and meaningless to calculate directly the weak interaction

between two microcracks if they are very far from each other in such a microcrack-profuse solid. In the

present approximate scheme, therefore, a subregion X of the plate is defined around the ath microcrack, as

schematized in Fig. 1(b). The size of X is much larger than that of a single microcrack, e.g., 10 or 20 times

the average length of microcracks, while the shape of X may be specified according to the statistical dis-
tribution of microcrack orientations. An elliptical shape can generally be specified with its two principal

axes 2a1 and 2a2 aligned with the x1- and x2-directions, respectively, as shown in Fig. 1(b). In the isotropic

Fig. 1. (a) An elastic matrix containing distributed microcracks, and (b) the approximate model for calculating the SIFs of the ath
microcrack.
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case of completely random orientations, it is reasonable and convenient to choose X of circular shape.

More detailed discussion on the specification of the shape and size of X will be made in the sequel based on

numerical examples.

The interaction of those microcracks with centers located in X may be calculated by one of the various

micromechanical methods mentioned in the introduction. However, it is conceptually inappropriate to

neglect completely the microcracks out of X, even though the size of X is much larger than the characteristic

size of microcracks. The subregion X exists in the plate as a weakened ‘‘inclusion’’ with an effective elastic

stiffness lower than that of the pristine matrix. Neglecting all the microcracks outside X renders the outside
medium stiffer than the actual microcracked plate, and therefore leads to an incorrect result that the average

stress rX within X is lower than the far-field stress r1. In other words, although the interaction between

the ath microcrack and a single microcrack in S � X is weak, the total contribution of all the numerous

microcracks in S � X to the SIFs of the ath microcrack is finite and, generally, should be taken into

consideration. Therefore, a modified far-field stress r0 is applied in the approximate model in Fig. 1(b) such

that the average stress within the region X remains the correct value, r1.

According to the well-known Eshelby�s theory, the stress and strain fields in an elliptical inclusion

embedded in an otherwise homogeneous infinite matrix are uniform when a constant stress is applied in the
far field. Accordingly, the average stress within the inclusion X in Fig. 1(b) is expressed as (Mura, 1987)

rX ¼ B : r0: ð1Þ
The fourth-order tensor B, which is referred to as the average stress concentration tensor in the literature,

was expressed by Walpole (1969) as

B ¼ ½Iþ P : ðM�M0Þ	�1
; ð2Þ

where M0 and M denote the elastic compliance tensors of the pristine matrix and the microcracked in-

clusion X, respectively, and I is the fourth-order unit tensor. Throughout this paper, a boldface letter stands

for a vector or tensor, and a colon between two tensors denotes contraction (inner product) over two
indices. The fourth-order tensor P in Eq. (2) is related to Eshelby�s tensor S by

P ¼ L0 : ðI� SÞ; ð3Þ

Fig. 2. Global and local coordinate systems.
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where L0 ¼ M�1
0 is the elastic stiffness tensor of the matrix. Therefore, P depends on the orientation and

shape of the inclusion as well as on the elastic moduli of the surrounding matrix. Some analytical ex-

pressions of S and B can be found in the literature (see, e.g., Walpole, 1969; Mura, 1987).

It is easily proved that in the case of a uniform traction boundary condition, the presence of microcracks
does not change the average stress within the material (Kachanov, 1993). This means that if all the mi-

crocracks both outside and inside the region X were considered, the average stress in X would equal ap-

proximately to the far-field stress, r1. To yield an exact estimate of the SIFs of the ath microcrack from the

approximate model in Fig. 1(b), therefore, one should have

rX ¼ r1: ð4Þ
From Eqs. (1) and (4), the modified far-field stress in Fig. 1(b) should be

r0 ¼ B�1 : r1: ð5Þ
Thus in the present method, the microcracks throughout the plate S are divided into two groups, which

are treated in different ways in calculation of their contributions to the SIFs of the ath microcrack. The

interacting microcracks inside X are calculated directly from a discrete micromechanical method, while the

influence of those cracks out of X is reflected by modifying the far-field stress. Some further details of this

global/local model will be discussed in the following sections of this chapter, including the estimation of the

effective elastic moduli M, the calculation of the direct interaction of microcracks in X, and the determi-

nation of the shape and size of X.

By the way, only the case of a traction boundary condition on the microcracked specimen is considered

in this paper because that of displacement boundary condition can be studied analogously. For the latter
case, the average strain tensor compatible to the given displacements in the far field should be modified in

terms of the average strain concentration tensor.

2.2. Effective moduli of microcracked solids

To determine the stress concentration tensor B in Eq. (5), the effective compliance tensor M in Eq. (2) of

the microcracked inclusion X has to be determined first. Among the effective medium methods afore-

mentioned, the non-interacting approximation and the SCM provide an upper bound and a lower bound of
the effective stiffness tensor, respectively. A more exact result can be obtained from the Taylor model-based

effective medium method, which was recently suggested by Feng and Yu (2000) and will be adopted in the

present paper, though other methods (e.g., the DM and IDD method) are also applicable.

An isotropic plate weakened by numerous microcracks of uniformly random locations and orienta-

tions is first taken as an illustration. In this case, as discussed above, the subregion X is specified as a

circular shape. For convenience in formulation, we express a 2D symmetric fourth-order tensor in the form

of 3
 3 matrix by using the abbreviated notations 1, 2 and 3 for 11, 22 and 12 (or 21), respectively. Then,

the compliance tensor of the isotropic matrix with Young�s modulus E0 and Poisson�s ratio m0 is expressed
as

½M0	 ¼
1

E0

1 �m0 0

�m0 1 0

0 0 1þ m0

2
4

3
5: ð6Þ

For a circular inclusion embedded in such a matrix, we have (Mura, 1987):

½P	 ¼ E0

4

3=2 1=2 0

1=2 3=2 0

0 0 1

2
4

3
5: ð7Þ
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Then using the method of Feng and Yu (2000), the effective compliance tensor of an elastic solid containing

randomly oriented microcracks is expressed as

½M	 ¼ 1

E

1 �m 0

�m 1 0

0 0 1þ m

2
4

3
5; ð8Þ

with the effective Young�s modulus and Poisson�s ratio being given by

E ¼ E0½1þ pxð1þ pxÞ	�1
; m ¼ m0½1þ pxð1þ pxÞ	�1

; ð9Þ

respectively, where x ¼ ð1=AÞ
PN

a¼1ðlaÞ
2
is the conventional 2D scalar microcrack density parameter

(Bristow, 1960), A the area of X, and N the number of microcracks in X.
In another extreme case where all microcracks are aligned along the direction of the x1-axis, the effective

compliance tensor of X is obtained from the same method as (Feng and Yu, 2000)

½M	 ¼
1=E11 �m12=E11 0

�m12=E11 1=E22 0

0 0 1=ð2G12Þ

2
4

3
5; ð10Þ

where

E11 ¼ E0; m12 ¼ m0;

E22 ¼ E0 1

�
þ px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 4px

p
1
h

þ 2pxð1þ m0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2px

p i1=2
�1

;

G12 ¼ G0 1

(
þ

ffiffiffi
2

p
px

2ð1þ m0Þ
1
h

þ 2pxð1þ m0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2px

p i1=2)�1

;

ð11Þ

with G0 ¼ E0=ð2ð1þ m0ÞÞ being the shear modulus of the matrix.

2.3. Stress intensity factors of interacting microcracks

Kachanov�s method of microcrack interaction (Kachanov, 1987, 1993) is employed in the present paper
owing to its simplicity and effectiveness in most cases of microcrack array and density. This method is

reviewed briefly in the Appendix A. Thereby, the SIFs at the tips of the ath microcrack can be calculated by

(Tada, 1973)

Ka
I ð�laÞ ¼

1ffiffiffiffiffiffiffi
pla

p
Z la

�la

ffiffiffiffiffiffiffiffiffiffiffiffi
la � n
la 
 n

s
paðnÞdn;

Ka
IIð�laÞ ¼

1ffiffiffiffiffiffiffi
pla

p
Z la

�la

ffiffiffiffiffiffiffiffiffiffiffiffi
la � n
la 
 n

s
saðnÞdn;

ð12Þ

where paðnÞ and saðnÞ denote, respectively, the normal and tangential pseudo-tractions at position n along

the ath crack, and n ¼ �la corresponds to the two tips of the crack.

2.4. Shape and size of subregion X

To reveal some basic aspects of the presented method, two examples are considered in this section for

calculation of the SIFs of a microcrack interacting with many others.
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2.4.1. Case 1: randomly oriented microcracks

Consider first an isotropic plate with numerous microcracks of completely random locations and ori-

entations, as shown in Fig. 3. The density of microcracks is taken as nc ¼ 2500 m�2. Their half-lengths
satisfy a normal distribution law UðlÞ with the mathematical expectation value being 5 mm and the variance

being 1 mm. A uniaxial tensile stress is applied in the direction of x2-axis, that is, r1
22 ¼ r1 > 0 and r1

ij ¼ 0

for other i and j.
The effect of the shape of the subregion X on the SIFs of a microcrack is examined first. An elliptical

shape is specified for the region X. Different aspect ratios a1=a2 of X are analyzed while keeping the minor

half-axis, amin ¼ min½a1; a2	, being a constant value. Three such subregions are schematized in Fig. 3 to

calculate the SIFs of the ath microcrack. It is found from a sufficient number of numerical examples that

the shape of X exerts little influence on the SIFs provided that amin is large enough. This implies that in the
isotropic case, the circular shape (i.e., a1 ¼ a2 ¼ a) should be chosen for X, which contains the least number

of microcracks making the calculation easier.

Then the influence of the size of X is investigated. The numerical results show that the SIFs of a micro-

crack possess a pronounced dispersion when the radius a of X is small (e.g. three times the average half-

length of microcracks). This reflects the strong interaction of microcracks that are close to each other, and

indicates the necessity to account for direct interaction in analysis of failure behavior of brittle solids. The

SIFs of the microcrack approach to stable values when a is much larger than the characteristic size of

microcracks. A further increase in the size of X does not cause evident change in the SIFs of the microcrack.
Therefore, it is unnecessary to calculate the direct interaction of microcracks that are far from each other.

However, a large size of X will certainly lead to a cumbersome calculation, especially when the SIFs of

many microcracks need to be determined. According to our numerical analysis, a value of a between 10 and

20 times the average half-length of microcracks seems suitable to achieve a balance of the accuracy of

results and the simplicity of calculation. One may decide the dimension of a subregion by considering

such factors as the microcrack density and the required accuracy. For a high microcrack density, a rela-

tively small subregion may be defined to yield an easier calculation. An empirical criterion is that a re-

gion containing about 100 microcracks will be large enough to yield a satisfactory accuracy and small
enough to calculate easily. In addition, the numerical results also prove that the cracks in the comple-

mentary region S � X has an evident influence on the SIFs of a crack in X, especially when the crack

concentration is high.

Fig. 3. Definition of the subregion X in the case of randomly oriented microcracks.
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2.4.2. Case 2: parallel microcracks

In this example, we consider a plate with a family of parallel microcracks normal to the x2-axis. Their
centers are located in a regular and doubly periodic manner, as shown in Fig. 4, where d1 and d2 denote the
spacings of neighboring cracks in the x1- and x2-directions. Their lengths satisfy the same normal distri-

bution rule as in the first example. A uniaxial tensile stress r1
22 ¼ r1 is assumed. The analysis on the effects

of the shape and size of X yields similar conclusions as those in the first example, except that an elliptic

shape of X seems more appropriate when the difference between d1 and d2 is relatively large.

3. Size effect under tension

It is well known that the strength of specimens of a brittle or quasi-brittle material usually exhibits a

significant size effect. That is, the material strength measured decreases evidently as the specimen size in-

creases. This size effect of such engineering brittle materials as concrete and rocks are caused mainly by their

heterogeneous microstructures due to the stochastic distribution of constituent phases and microdefects.

Using the effective field-subregion method presented above, the size effect of material strength associated

with interacting microcracks is examined here for otherwise homogeneous brittle solids.

2D rectangular plate specimens with length 2L and width L are taken as an example, as shown in Fig.

5(a). The boundary effect is disregarded in this paper, because the size of specimens is assumed much larger
than the average length of microcracks. In such a case, the interaction of disordered microcracks is the main

reason for the size effect of specimen strength. According to the effective field-subregion method, only when

a microcrack is far from the boundary of a subregion X, can its stress intensity factors be calculated exactly.

Therefore, a sufficient large number of subregions are chosen such that each microcrack is near the center of

a subregion.

For a mixed-mode crack in a brittle solid, the energy release rate theory developed initially by Griffith is

often taken as the controlling parameter of crack growth. Accordingly, the mixed-mode fracture criterion

may be written as (Kanninen and Popelar, 1985; Feng and Yu, 2002)

G ¼ KI

KIC

� �2

þ KII

KIIC

� �2

¼ 1; ð13Þ

Fig. 4. Definition of the subregion X in the case of parallel microcracks.
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where KI and KII represent the mode-I and II SIFs, KIC and KIIC their intrinsic critical values, respectively.

For simplicity, KIC and KIIC are regarded as material constants without dependence upon microcrack

propagation. This is exact only for perfectly brittle materials, in which the release of internal energy due to

microcrack growth is entirely transformed into the increase in the surface energy of propagated micro-
cracks, that is, no other microscopic dissipation mechanism exists at crack tips. For actual materials, KIC

and KIIC generally increase as a crack grows. This will weaken the size effect of material strength but is not

considered in the present paper. To emphasize the effect of microcrack interaction, furthermore, we assume

that KIC and KIIC are spatially uniform. For a heterogeneous matrix as in most actual materials, the spatial

fluctuation of KIC and KIIC can easily be accounted for in the present method by specifying different values

of KIC and KIIC for different microcracks.

To determine the load-bearing capacity of a specimen, the far-field stress is denoted as r1 ¼ mr0
1, where

r0
1 is a reference stress tensor and m is a load factor. The mode-I and II SIFs at the two tips of the ath

microcrack subjected to the reference stress r0
1 are calculated by using the method in Section 2 and

designated as Ka
I0ð�laÞ and Ka

II0ð�laÞ, respectively. Thus, the ath microcrack will undergo an unstable

propagation at one of its two tips when the load factor m reaches the following value:

ma ¼ min
Ka

I0ðlaÞ
KIC

� �2
"8<

: þ Ka
II0ðlaÞ
KIIC

� �2
#�1=2

;
Ka

I0ð�laÞ
KIC

� �2
"

þ Ka
II0ð�laÞ
KIIC

� �2
#�1=2

9=
;: ð14Þ

The specimen strength is defined as the applied stress rc at which any one of the microcracks starts to

propagate. That is,

rc ¼ mcr
0
1; ð15Þ

Fig. 5. (a) A specimen with randomly orientated microcracks, and (b) the size effect of specimen strength under tension.
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where the critical load factor mc is the minimum value of ma among all the microcracks:

mc ¼ minfma; a ¼ 1; 2; . . . ;Ng: ð16Þ

For instance, consider rectangular specimens with length 2L and width L, subjected to uniaxial tension in

the x2-direction. Take the following material parameters for the matrix: the Young�s modulus E ¼ 0:35

105 MPa, the Poisson�s ratio m ¼ 0:3, the critical SIFs KIC ¼ 0:165 MPam1=2 and KIIC ¼ 0:330 MPam1=2,

and the number density of microcracks nc ¼ 2500 m�2. The sizes of microcracks satisfy the same normal
distribution law UðlÞ as in Section 2.4.

The orientations, sizes and locations of microcracks in each sample of specimens are specified by a

computer program according to their probabilistic density distribution functions. Several samples of the

same size are randomly produced, and their strengths are calculated respectively. Specimens of different

sizes are considered by varying the parameter L in order to verify the size effect of strength. Each specimen

may contain microcracks of a great number, say, 5000. If the direct interaction of all these microcracks is

calculated, one has to solve a system of 10 000 equations, each of which has interactive terms (or trans-

mission K-factors) of a very large number (about 1:2
 107). Evidently, such a calculation is very difficult,
and, in fact, it is also unnecessary. By using our present method, however, if a subregion contains 100

microcracks, one needs to solve only a system of 200 equations, each having less than 5000 interactive

terms. As the total number of microcracks increases, the computation time increases proportionally, in-

stead of exponentially.

Two cases of orientation distribution of microcracks are considered. In the first case, all microcracks are

uniformly randomly oriented (Fig. 5(a)). The fracture stress averaged from multiple samples of the same

size is plotted in Fig. 5(b) as a function of the specimen size. In the second case, all microcracks are aligned

along the x1-axis (Fig. 6(a)). The corresponding changing curve of the critical stress with respect to the
specimen size is shown in Fig. 6(b). In both the cases, significant size effects of material strength have been

Fig. 6. (a) A specimen with parallel microcracks, and (b) the size effect of specimen strength under tension.
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observed. The dispersion of the calculation results in the case of parallel microcracks is more pronounced

than that of randomly oriented microcracks. This is physically reasonable because aligned microcracks are

easier to coalesce than randomly orientated microcracks, or in other words, the interaction of aligned

microcracks is stronger. It is seen that the particular statistics of microcracks dictates the failure and the
associated size effect of brittle solids. The critical condition may fluctuate significantly depending upon the

actual arrangement of the crack array.

It is also found from numerical calculations that as a consequence of interaction, a minority of mi-

crocracks are closed when a uniaxial tensile stress is applied. Interaction of closed microcracks can be

considered in the calculation, as will be shown in the next section. However, no observable influence of

closed microcracks has been found in our numerical results on the tensile strength of specimens. This is also

reasonable because the load-bearing capacity of a brittle material exposed to tension is associated mainly

with the fracture of open microcracks. Therefore, closed microcracks are assumed to be inactive, and their
effect is negligible in the case of tension.

4. Size effect under compression

In this section, the size effect of material strength caused by microcrack interaction is further studied in

the case of compression. Investigations on interaction of closed microcracks are still very limited. Basista

and Gross (2000) extended Kachanov�s method to 2D crack interaction problems under compression.
Lehner and Kachanov (1995) analyzed the influence of interaction of frictional cracks on the stress-strain

relations for rocks in compression. Carpinteri et al. (1996) studied the size effects of strength of brittle

materials under compression using the boundary element method, including the coupling influences of

crack interaction, propagation and intersection. However, only a small number of cracks can be considered

by their method due to the cumbersome computation.

The effective field-subregion method presented in Section 2 can readily be extended to the case of

compression by considering the following aspects in calculation:

(i) the closure and frictional sliding of microcracks,

(ii) the effective elastic moduli M of the microcracked solid and the stress concentration tensor B, which

are different than those of tension, and

(iii) the fracture criterion of closed microcracks.

In the case of compression, the pseudo-tractions between the faces of a microcrack include three parts,

namely, the tractions induced by the far-field stress, their fluctuations due to microcrack interaction, and

the frictional forces. Thus, the normal and tangential tractions of the ath microcrack are expressed as

paðnÞ ¼ pa
1 þ na �

X
b6¼a

½hsbirab
s ðnÞ	 � na;

saðnÞ ¼ sa
1 þ na �

X
b6¼a

½hsbirab
s ðnÞ	 �ma � f aðnÞ;

ð17Þ

respectively, where rab
s ðnÞ denotes the induced stress at point n of the ath microcrack when a uniform

tangential traction of unit intensity is loaded along the bth microcrack. The angle brackets stand for the

average of a variable over the crack face.

The maximum frictional traction between the faces of the ath microcrack is given by the Amontons

frictional law:

f a
max ¼ lhpai; ð18Þ
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where l is the frictional coefficient. The driving force of frictional sliding is approximately expressed as

hsaid ¼ sa
1 þ na �

X
b 6¼a

½hsbirab
s ðnÞ	 �ma: ð19Þ

If the driving shear traction hsaid is lower than the maximum frictional traction f a
max, then there is no

relative displacement between the two surfaces of the ath microcrack, that is, this microcrack is inactive and

makes no contribution to the SIFs of other microcracks. Frictional sliding occurs in the ath microcrack
when the average shear traction hsaid reaches f a

max.

In the case of uniaxial compression in the x2-direction, frictional sliding occurs in the microcracks with

orientations in the following range:

hf 6 h6
p
2
; ð20Þ

with hf ¼ tan�1 l, and all other microcracks are inactive. Then following the calculation scheme for closed

microcracks in Yu and Feng (1995), the effective Young�s modulus E and Poisson�s ratio m under uniaxial

compression are obtained readily as

E ¼ E0 1

�
þ 1

3
nca2ð1� sin3 hf � l cos3 hfÞ

��1

;

m ¼ E
E0

m0

�
þ 1

3
nca2ð1� sin3 hf � l cos3 hfÞ

�
:

ð21Þ

Then the stress concentration tensor B can be determined from Eq. (2) in conjunction with (4) and (21). It

should be noted that the effective elastic moduli in Eq. (21) and the corresponding B tensor can be used only

in the case of uniaxial compression, because they are not constants but depend on the compressive stress

state.

For a closed microcrack, KI ¼ 0 and then the following fracture criterion is adopted:

KII ¼ KIIC: ð22Þ
Similarly to Section 3, the far-field stress is expressed as �r1 ¼ �mr0

1, where �r0
1 is a reference stress

tensor and m is a non-dimensional load factor. The critical load factor mc is also defined as that when the

first microcrack propagation occurs.

Fig. 7. The size effect of material strength under compression.
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Consider again rectangular specimens of length 2L and width L, subjected to uniaxial compression in the

x2-direction. The material constants of the matrix are taken the same as those in Section 3. The frictional

coefficient is taken as l ¼ 0:12, and the number density of microcracks nc ¼ 1225 m�2. Their sizes satisfy

the same normal distribution as that in Section 3. It is found that due to interaction, some microcracks are
open in the case of uniaxial compression. They are also considered in our calculation by using the method

in Section 3. In the case of uniformly random orientation of microcracks, the dependence of the material

strength on the specimen size is shown in Fig. 7. It is evident that the size effect in compression is less

pronounced than that in tension. This is because some microcracks become inactive and the microcrack

interaction is weakened due to friction. Again, it is found that the failure and the associated size effect of a

brittle solid depend strongly on the statistics of microcracks.

5. Numerical calculation for effective elastic moduli of microcracked solids

As mentioned in the introduction, various micromechanics schemes have been established for esti-

mating the effective moduli of an elastic matrix containing many dispersed microcracks. Such methods as

the SCM, the GSCM, the DM, the MTM and the IDD method have been well reviewed and recapi-
tulated by Kachanov (1993), Nemat-Nasser and Hori (1993), Krajcinovic (1996), Yu and Feng (1997),

Zheng and Du (2001), and many others. To date, however, estimation of effective elastic moduli of mi-

crocracked solids is still a problem of extensive arguments. On one hand, the accuracy and the validation

scopes of these established methods are yet to be evaluated further, and then it seems still a puzzling issue

to determine which method should be employed for a specific problem. On the other hand, there is a lack

of experimental data (Carvalho and Labuz, 1996) available in the literature for effective moduli of mi-

crocracked solids, especially for those with high concentration of microcracks. Therefore, it seems a

promising approach to evaluate the accuracy of these micromechanics schemes via numerical methods.
However, little work of direct numerical analysis has been conducted on this subject because of the

lack of effective computational methods for treating microcracks of a large number or of high concen-

tration.

The effective field-subregion method presented in Section 2 is now adopted to calculate directly the

Young�s moduli of rectangular specimens containing up to thousands microcracks, as shown in Fig. 5(a).

The average strain eij of a specimen subjected to uniform tensile stress r1
ij on the boundary is amenable to

an additive decomposition as

eij ¼ e0ij þ ecij; ð23Þ

where e0ij and ecij denote the average strain tensor of the elastic matrix and its increase due to all the micro-

cracks in the specimen, respectively. Assuming the matrix isotropic, e0ij and ecij can be obtained by

e0ij ¼ Mijklr
1
kl ¼

1

2E0

½ð1þ m0Þðdikdjl þ dildjkÞ � 2m0dijdkl	r1
kl ; ð24Þ

ecij ¼
1

A

XN
a¼1

la �bbðaÞi nðaÞj þ �bbðaÞj nðdÞi

� �
; ð25Þ

respectively, where �bbðaÞi denotes the average opening displacement vector of the ath microcrack. Once the

pseudo-tractions on the ath microcrack have been determined from the method in Section 2, its normal and
tangential opening displacements can be given by
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�bbðaÞ1 ¼ pla
E

½cos hahsai � sin hahpai	;

�bbðbÞ2 ¼ pla
E

½sin hahsai þ cos hahpai	:
ð26Þ

Thus, the average strains and thereby the effective moduli of a microcracked specimen can be deter-

mined. For the two cases of completely random orientation and aligned orientation of microcracks, the

numerical results are shown in Figs. 8 and 9, respectively, in comparison with the experimental data of

Carvalho and Labuz (1996), the numerical results of Kachanov (1993), as well as the analytical results

obtained from the non-interacting approximation (or the dilute concentration method, DCM), SCM, DM,

IDD and the method suggested by Feng and Yu (2000). Because each specimen has a very large number of

microcracks (e.g., up to six thousands), no evident difference has been observed among the numerical re-
sults of different specimens with microcracks of the same distribution, as is contrary to the high dispersion

of strength. As expected, the effective Young�s modulus exhibits almost no size effect provided that the

specimen is large enough to contain a sufficient number of microcracks. It is also found that the direct

interaction of microcracks in the subregion also influences the effective elastic modulus evidently, that is,

neglecting the interaction of microcracks in X may lead to a considerable error in effective elastic moduli.

But in comparison with the SIFs, the effective elastic modulus shows a weaker dependence on the subregion

dimension.

In addition, it is seen that the numerical estimates agree well with the experimental data of Carvalho and
Labuz (1996), and the analytical results of the DM, IDD, and Feng and Yu�s method. Especially, it is

evident that the difference between the numerical calculation and the IDD prediction is very small even at

very high concentration of microcracks. The estimates of DCM and SCM are satisfactory only when the

scalar microcrack density is very small (e.g., less than 0.1). For comparison, Kachanov�s calculation results

(Kachanov, 1993) are also given in Figs. 8 and 9. For randomly oriented cracks, his solution agrees very

well with the non-interacting approximation. For parallel cracks, his estimate for the effective Young�s
modulus is a little higher than the non-interacting solution. Kachanov (1993) attributed this slight stiffening

effect to the dominance of the shielding effect of microcracks. Except under dilute concentrations, however,
our present numerical solutions for effective elastic moduli are evidently lower than the non-interacting

approximation in both the cases of microcrack orientations. The present scheme, though based partly on

Fig. 8. Comparison of the effective Young�s modulus of a 2D solid containing microcracks of completely random orientations.
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the Kachanov method, leads to results at variance with those of Kachanov (1993). This is attributed to the

contribution of the cracks in the complementary region S � X. On one hand, further experimental evidence

will be of great interest for examining the accuracy of these solutions. On the other hand, Zheng and Du

(2001) proved in a strict way that the IDD method has a high accuracy even for high concentration of

microcracks. This seems an indirect evidence for the good accuracy of the present solution. Therefore, the

method presented in Section 2 provides a useful tool for evaluating various micromechanics methods for
the effective elastic moduli of microcracked solids.

6. Conclusions

The deformation and failure behaviors of such brittle materials as ceramics and concrete are rather more

than often associated with interacting microcracks. The effective elastic moduli of microcracked solids
depend mainly on the statistically average effects of microcrack interaction, while the fracture and failure

properties of materials are sensitive to higher-order effects of microcrack interaction. Therefore, it is of

interest to assess quantitatively the effects of microcrack interaction from the viewpoint of micromechanics.

An approximate method is presented here to calculate the interaction of microcracks of a large number.

To determine the SIFs of a microcrack, the microcracked solid is divided into two regions, which are dealt

with in different ways. The interacting microcracks within an elliptical region around the considered mi-

crocrack are calculated directly by using Kachanov�s interaction method, while the influence of other

microcracks is reflected by modifying the far-field stress. This simplified scheme yields a satisfactorily accu-
rate estimate of stress intensity factors.

This global/local method is first employed to analyze the size effect of strength of brittle specimens

containing numerous microcracks. Both the cases of tension and compression are considered. As another

example of its application, direct numerical calculations have been conducted for the effective elastic moduli

of 2D microcracked solids in order to provide a valuable numerical reference for evaluation of various

micromechanics methods. Some further potential applications of this method include the simulation of the

failure process of microcrack-weakened materials, the transmission from distributed evolution of damage

to damage localization, the behavior of microcrack clusters, and so on. Though the method is presented
only for 2D problems in this paper, its 3D extension is of considerable interest.

Fig. 9. Comparison of the effective Young�s modulus of a 2D solid containing aligned microcracks.
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Appendix A. Kachanov�s method of microcrack interaction

For completeness, Kachanov�s method of microcrack interaction is reviewed very briefly here. For

more details, the reader is referred to Kachanov (1987, 1993). According to the superposition principle

of elasticity, the problem of a linear elastic solid containing traction free cracks and subjected to a

uniform stress r1 on the boundary is equivalent to the problem where the traction stress ta1 ¼ �na � r1 is
applied to the crack faces and the boundary of the solid is traction free, in the sense that they lead

to identical results for the stress intensity factors of all microcracks. The latter problem is further con-

sidered as a superposition of N subproblems each containing one crack subjected to pseudo-tractions

as yet unknown. Accounting for microcrack interaction, thus, the tractions along the ath crack are

given by

taðnÞ ¼ ta1 þ na �
X
b6¼a

rabðnÞ; ðA:1Þ

where rabðnÞ denotes the stress tensor induced by the bth crack at point n along the ath crack.

In the approximate method of Kachanov (1987), the key assumption that results in a major simplifi-

cation of the problem is that the tractions in Eq. (A.1) are averaged over the ath crack, and denoted as htai.
This means that the impact of the traction fluctuation taðnÞ � htai along the ath crack on other cracks

is neglected. This method leads to a satisfactory accuracy of the SIFs except in some cases, e.g., two mi-
crocracks perpendicular to each other and very small in spacing.

Let rab
n ðnÞ and rab

s ðnÞ denote the stresses generated at position n along the ath crack when the bth crack is

subjected to a uniform normal traction and a uniform tangential traction of unit intensity, respectively.

Thus, the normal and tangential pseudo-tractions on the ath crack are simplified as

paðnÞ ¼ pa
1 þ na �

X
b6¼a

½rab
n ðnÞhpbi þ rab

s ðnÞhsbi	 � na;

saðnÞ ¼ sa
1 þ na �

X
b6¼a

½rab
n ðnÞhpbi þ rab

s ðnÞhsbi	 �ma;
ðA:2Þ

respectively, where ma is the unit vector along the ath crack (Fig. 2), the angle brackets stand for the av-

erage of a parameter over the crack surface.

Averaging Eq. (A.2) over the ath crack, a system of 2N linear algebraic equations with respect to

htai ¼ hpaina þ hsaima can be obtained as

hpai ¼ pa
1 þ

X
b6¼a

½Kab
nnhpbi þ Kab

sn hsbi	;

hsai ¼ sa
1 þ

X
b6¼a

½Kab
ns hpbi þ Kab

ss hsbi	;
ðA:3Þ

where the transmission K-factors characterize the attenuation of the average normal and tangential trac-

tions in transmission of stresses from one crack to another (Kachanov, 1987). After the average tractions
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htai have been solved from this system, the pseudo-tractions taðnÞ can be determined from Eq. (A.2), and

then the stress intensity factors of the interacting cracks can be determined from Eq. (12).
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