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Abstract

The effects of microcrack interaction on the failure behavior of materials present one problem of considerable in-
terest in micromechanics, which has been extensively argued but has not been resolved as yet. In the present paper, a
simple and effective method is presented based on the concept of the effective field to analyze the interaction of
microcracks of a large number or of a high density. To determine the stress intensity factors of a microcrack embedded
in a solid containing numerous or even countless microcracks, the solid is divided into two regions. The interaction of
microcracks in a circular or elliptical region around the considered microcrack is calculated directly by using Kacha-
nov’s micromechanics method, while the influence of all other microcracks is reflected by modifying the stress applied in
the far field. Both the cases of tensile and compressive loading are considered. This simplified scheme may yield an
estimate for stress intensity factors of satisfactory accuracy, and therefore provide a potential tool for elucidating some
phenomena of material failure associated with microcracking. As two of its various promising applications, the above
scheme is employed to investigate the size effects of material strength due to stochastic distribution of interacting
microcracks and to calculate the effective elastic moduli of elastic solids containing distributed microcracks. Some
conventional micromechanics methods for estimating the effective moduli of microcracked materials are evaluated by
comparing with the numerical results. Only two-dimensional problems have been considered here, though the three-
dimensional extension of the present method is of greater interest.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many phenomena of deformation and failure of brittle or quasi-brittle solids are associated with in-
teraction and propagation of disordered microcracks. The problem of microcrack interaction has been
extensively investigated over the past decades but has not been resolved yet. Such transport properties as
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the effective elastic moduli and thermal conductivities of microcracked solids are closely related to the
statistically averaged, zeroth- and first-order effects of microcrack interaction. However, such failure-
related properties as the load-bearing capacity and the strain-softening behavior are sensitive to the sizes,
locations and orientations of individual microcracks, namely, higher-order effects of microcrack interac-
tion. On one hand, therefore, some effective medium or effective field methods, e.g. the self-consistent
method (SCM) (Budiansky and O’Connell, 1976; Horii and Nemat-Nasser, 1983), the generalized self-
consistent method (GSCM) (Christensen and Lo, 1979; Huang et al., 1994, 1996), the differential method
(DM) (Zimmerman, 1985; Hashin, 1988), Mori-Tanaka method (MTM) (Mori and Tanaka, 1973; Ben-
veniste, 1986) and the interactive direct-derivation (IDD) method (Zheng and Du, 1997, 2001), have been
established for estimating the impacts of microcrack interaction on the effective elastic moduli of micro-
cracked solids (Kachanov, 1993; Krajcinovic, 1996; Feng and Yu, 2002). These methods, with few ex-
ceptions, omit the concrete positions and orientations of individual microcracks. To gain an insight into the
failure behavior of brittle solids, on the other hand, direct interaction of microcracks has to be taken into
account.

Micromechanical discrete methods and finite element analysis may provide the stress intensity factors
(SIFs) of multiple interacting microcracks of a specified array. Owing to the difficulty in obtaining an
analytical solution of such problems, some approximate numerical schemes have been developed. Among
them, several typical examples are the method of pseudo-tractions (Hori and Nemat-Nasser, 1987; Ka-
chanov, 1987), the complex potential method (Gong and Horii, 1989), the double potential method
(Chudnovsky et al., 1987), and the weight function method (Bueckner, 1975). Literature reviews on the
calculation of microcrack interaction have been given by Karihaloo (1979), Kachanov (1993), Chen (1995),
Feng and Yu (2002), Petrova et al. (2000), and many others. The problem of interaction of multiple mi-
crocracks is often reduced to a set of integral equations, which can be solved by the series expansion
method, perturbation method, boundary element method, collocation method, and some other approxi-
mate methods. In addition, actual problems of crack interaction are generally three-dimensional (3D), but
due to the complexity of calculation, most investigations on this subject are still limited to two-dimensional
(2D) crack arrays.

Theoretically, the above mentioned methods can be used in the case of numerous microcracks.
However, the number of equations increases very rapidly with the increase in the number of microcracks.
The cumbersome numerical computation limits the application of these methods to only those situations
where the number of microcracks is relatively small (see, e.g., Kachanov, 1987, 1993; Huang et al., 1994,
1996; Zhan et al., 1999; Seelig et al., 2000; Shen and Yi, 2001). To date, there seems to be no method yet
available for calculating the interaction of microcracks of a large number, as in most cases of actual
materials. It seems straightforward to calculate the SIFs of a microcrack by considering merely its
neighboring microcracks and omitting those far from it. Unfortunately, such a simplification is inap-
propriate, especially in the case of higher concentration of microcracks, as will be illustrated in the next
section.

Therefore, an attempt is made in this paper to present a novel method to calculate the interaction of
numerous disordered microcracks. Recently, Zheng and Du (1997, 2001) developed the IDD method for
estimating the elastic moduli of heterogeneous materials with microdefect interaction effects in a skillful
and effective manner. Feng (2001) elucidated the correspondence relation between the effective medium
method and the effective field method in estimation of elastic moduli. Combining Kachanov’s method
for calculating the direct interaction of microcracks in a local region with the concept of the effective
stress field in the global sense, a simple method is suggested in the present paper for analyzing the strong
interaction of distributed microcracks of a large number. Both the cases of tension and compression
are considered. To illustrate its various applications, this global/local method is used to examine the
size effects of material strength and to calculate the effective elastic moduli of microcrack-weakened
materials.
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2. Effective field-subregion model
2.1. Model

Consider a plate S subjected to a uniform stress o, in the far field and weakened by a large number of
statistically distributed, planar microcracks, as shown in Fig. 1(a). First, let us consider a microcrack in it,
say the ath one, whose length is denoted as 2/,. Refer to a global Cartesian coordinate system (O — xx;)
and a local system (O — x|x}) with the x}-axis aligned with the normal n* of this microcrack, as shown in
Fig. 2. The microcrack orientation is then expressible in terms of an angle, 0,. Assume that the statistical
distribution of the orientations and sizes of all microcracks satisfies a probability density distribution
function, p(/, 9).

It is very difficult or even impossible to calculate the exact SIFs of the ath microcrack, which interacts
with all the other, numerous or even countless, microcracks. Therefore, some approximations or simpli-
fications are necessary even when numerical methods are adopted. Evidently, the local stress fields around
the ath microcrack are sensitive to the positions, orientations and sizes of the neighboring microcracks
around it. In fact, it is generally unnecessary and meaningless to calculate directly the weak interaction
between two microcracks if they are very far from each other in such a microcrack-profuse solid. In the
present approximate scheme, therefore, a subregion 2 of the plate is defined around the ath microcrack, as
schematized in Fig. 1(b). The size of Q is much larger than that of a single microcrack, e.g., 10 or 20 times
the average length of microcracks, while the shape of Q may be specified according to the statistical dis-
tribution of microcrack orientations. An elliptical shape can generally be specified with its two principal
axes 2a; and 2a, aligned with the x;- and x,-directions, respectively, as shown in Fig. 1(b). In the isotropic
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Fig. 1. (a) An elastic matrix containing distributed microcracks, and (b) the approximate model for calculating the SIFs of the ath
microcrack.
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Fig. 2. Global and local coordinate systems.

case of completely random orientations, it is reasonable and convenient to choose Q of circular shape.
More detailed discussion on the specification of the shape and size of Q will be made in the sequel based on
numerical examples.

The interaction of those microcracks with centers located in Q2 may be calculated by one of the various
micromechanical methods mentioned in the introduction. However, it is conceptually inappropriate to
neglect completely the microcracks out of 2, even though the size of Q is much larger than the characteristic
size of microcracks. The subregion Q exists in the plate as a weakened “inclusion” with an effective elastic
stiffness lower than that of the pristine matrix. Neglecting all the microcracks outside Q2 renders the outside
medium stiffer than the actual microcracked plate, and therefore leads to an incorrect result that the average
stress oo within Q is lower than the far-field stress 6. In other words, although the interaction between
the ath microcrack and a single microcrack in § — Q is weak, the total contribution of all the numerous
microcracks in S — Q to the SIFs of the ath microcrack is finite and, generally, should be taken into
consideration. Therefore, a modified far-field stress a is applied in the approximate model in Fig. 1(b) such
that the average stress within the region € remains the correct value, 6.

According to the well-known Eshelby’s theory, the stress and strain fields in an elliptical inclusion
embedded in an otherwise homogeneous infinite matrix are uniform when a constant stress is applied in the
far field. Accordingly, the average stress within the inclusion @ in Fig. 1(b) is expressed as (Mura, 1987)

oo =B : 0gy. (1)

The fourth-order tensor B, which is referred to as the average stress concentration tensor in the literature,
was expressed by Walpole (1969) as

B=[I+P: (M-M,| ", (2)

where My and M denote the elastic compliance tensors of the pristine matrix and the microcracked in-
clusion Q, respectively, and I is the fourth-order unit tensor. Throughout this paper, a boldface letter stands
for a vector or tensor, and a colon between two tensors denotes contraction (inner product) over two
indices. The fourth-order tensor P in Eq. (2) is related to Eshelby’s tensor S by

P=1L,:(I-8), (3)
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where Ly = M, ! is the elastic stiffness tensor of the matrix. Therefore, P depends on the orientation and
shape of the inclusion as well as on the elastic moduli of the surrounding matrix. Some analytical ex-
pressions of S and B can be found in the literature (see, e.g., Walpole, 1969; Mura, 1987).

It is easily proved that in the case of a uniform traction boundary condition, the presence of microcracks
does not change the average stress within the material (Kachanov, 1993). This means that if all the mi-
crocracks both outside and inside the region Q2 were considered, the average stress in 2 would equal ap-
proximately to the far-field stress, 6.,. To yield an exact estimate of the SIFs of the ath microcrack from the
approximate model in Fig. 1(b), therefore, one should have

g — 0. (4)
From Egs. (1) and (4), the modified far-field stress in Fig. 1(b) should be
oo=B"':0.. (5)

Thus in the present method, the microcracks throughout the plate S are divided into two groups, which
are treated in different ways in calculation of their contributions to the SIFs of the «th microcrack. The
interacting microcracks inside Q are calculated directly from a discrete micromechanical method, while the
influence of those cracks out of Q is reflected by modifying the far-field stress. Some further details of this
global/local model will be discussed in the following sections of this chapter, including the estimation of the
effective elastic moduli M, the calculation of the direct interaction of microcracks in €, and the determi-
nation of the shape and size of Q.

By the way, only the case of a traction boundary condition on the microcracked specimen is considered
in this paper because that of displacement boundary condition can be studied analogously. For the latter
case, the average strain tensor compatible to the given displacements in the far field should be modified in
terms of the average strain concentration tensor.

2.2. Effective moduli of microcracked solids

To determine the stress concentration tensor B in Eq. (5), the effective compliance tensor M in Eq. (2) of
the microcracked inclusion £ has to be determined first. Among the effective medium methods afore-
mentioned, the non-interacting approximation and the SCM provide an upper bound and a lower bound of
the effective stiffness tensor, respectively. A more exact result can be obtained from the Taylor model-based
effective medium method, which was recently suggested by Feng and Yu (2000) and will be adopted in the
present paper, though other methods (e.g., the DM and IDD method) are also applicable.

An isotropic plate weakened by numerous microcracks of uniformly random locations and orienta-
tions is first taken as an illustration. In this case, as discussed above, the subregion Q is specified as a
circular shape. For convenience in formulation, we express a 2D symmetric fourth-order tensor in the form
of 3 x 3 matrix by using the abbreviated notations 1, 2 and 3 for 11, 22 and 12 (or 21), respectively. Then,
the compliance tensor of the isotropic matrix with Young’s modulus £, and Poisson’s ratio v, is expressed
as

1 1 —Vo 0
[Mo] = E— —Vo 1 0 . (6)
o1 0 0 1+
For a circular inclusion embedded in such a matrix, we have (Mura, 1987):

£ [3/2 120
[P}:ZO 1/2 3/2 0f. (7)
0 0 1
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Then using the method of Feng and Yu (2000), the effective compliance tensor of an elastic solid containing
randomly oriented microcracks is expressed as

1 I —v 0
[M] = E -V 1 0 ) (8)
0 0 I+4v

with the effective Young’s modulus and Poisson’s ratio being given by
E =E[l +no(l +10)]™", v=r[l +ro(l +20)] ™", 9)

respectively, where o = (1/4) Y, (1,)* is the conventional 2D scalar microcrack density parameter
(Bristow, 1960), A4 the area of 2, and N the number of microcracks in Q.

In another extreme case where all microcracks are aligned along the direction of the x;-axis, the effective
compliance tensor of Q is obtained from the same method as (Feng and Yu, 2000)

1/En —Vvi2/En 0
[M} = _VIZ/EII 1/E22 0 B (10)
0 0 1/(2Gy,)

where

Eyy=Ey, vi2 = v,

12 !
Ezz:EO{l+m\/2+4m[1+2m(1+v0)+\/1+2nw] } ,

-1
o) 1/2
G =Gy 1+M[1+2nw(l+vo)+\/1+2nw} ,
2(1 +V())

with Gy = Ey/(2(1 4 v)) being the shear modulus of the matrix.

2.3. Stress intensity factors of interacting microcracks

Kachanov’s method of microcrack interaction (Kachanov, 1987, 1993) is employed in the present paper
owing to its simplicity and effectiveness in most cases of microcrack array and density. This method is
reviewed briefly in the Appendix A. Thereby, the SIFs at the tips of the oth microcrack can be calculated by
(Tada, 1973)

l,£¢
Ki (£
(£1,) \/,qc

l,£¢

KA (+
n(£) \/_/ I, ¥¢

where p*(£) and 7%(¢) denote, respectively, the normal and tangential pseudo-tractions at position ¢ along
the ath crack, and & = %/, corresponds to the two tips of the crack.

(12)

2.4. Shape and size of subregion Q

To reveal some basic aspects of the presented method, two examples are considered in this section for
calculation of the SIFs of a microcrack interacting with many others.
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Fig. 3. Definition of the subregion Q in the case of randomly oriented microcracks.

2.4.1. Case 1: randomly oriented microcracks

Consider first an isotropic plate with numerous microcracks of completely random locations and ori-
entations, as shown in Fig. 3. The density of microcracks is taken as n. = 2500 m~2. Their half-lengths
satisfy a normal distribution law @(/) with the mathematical expectation value being 5 mm and the variance
being 1 mm. A uniaxial tensile stress is applied in the direction of x,-axis, that is, 655 = ¢> > 0 and oy = 0
for other / and ;.

The effect of the shape of the subregion Q on the SIFs of a microcrack is examined first. An elliptical
shape is specified for the region Q. Different aspect ratios a;/a, of Q are analyzed while keeping the minor
half-axis, ami, = minfa;,a,], being a constant value. Three such subregions are schematized in Fig. 3 to
calculate the SIFs of the ath microcrack. It is found from a sufficient number of numerical examples that
the shape of @ exerts little influence on the SIFs provided that a,,, is large enough. This implies that in the
isotropic case, the circular shape (i.e., @; = a, = @) should be chosen for Q, which contains the least number
of microcracks making the calculation easier.

Then the influence of the size of Q is investigated. The numerical results show that the SIFs of a micro-
crack possess a pronounced dispersion when the radius a of Q is small (e.g. three times the average half-
length of microcracks). This reflects the strong interaction of microcracks that are close to each other, and
indicates the necessity to account for direct interaction in analysis of failure behavior of brittle solids. The
SIFs of the microcrack approach to stable values when a is much larger than the characteristic size of
microcracks. A further increase in the size of Q does not cause evident change in the SIFs of the microcrack.
Therefore, it is unnecessary to calculate the direct interaction of microcracks that are far from each other.
However, a large size of Q will certainly lead to a cumbersome calculation, especially when the SIFs of
many microcracks need to be determined. According to our numerical analysis, a value of a between 10 and
20 times the average half-length of microcracks seems suitable to achieve a balance of the accuracy of
results and the simplicity of calculation. One may decide the dimension of a subregion by considering
such factors as the microcrack density and the required accuracy. For a high microcrack density, a rela-
tively small subregion may be defined to yield an easier calculation. An empirical criterion is that a re-
gion containing about 100 microcracks will be large enough to yield a satisfactory accuracy and small
enough to calculate easily. In addition, the numerical results also prove that the cracks in the comple-
mentary region S — Q2 has an evident influence on the SIFs of a crack in Q, especially when the crack
concentration is high.



454 X.-Q. Feng et al. | International Journal of Solids and Structures 40 (2003) 447-464

—_d e e = =

_— e e

IR N A A A R A A A A

Fig. 4. Definition of the subregion Q in the case of parallel microcracks.

2.4.2. Case 2: parallel microcracks

In this example, we consider a plate with a family of parallel microcracks normal to the x,-axis. Their
centers are located in a regular and doubly periodic manner, as shown in Fig. 4, where d; and d, denote the
spacings of neighboring cracks in the x;- and x,-directions. Their lengths satisfy the same normal distri-
bution rule as in the first example. A uniaxial tensile stress 655 = ¢* is assumed. The analysis on the effects
of the shape and size of Q yields similar conclusions as those in the first example, except that an elliptic
shape of Q seems more appropriate when the difference between d, and d, is relatively large.

3. Size effect under tension

It is well known that the strength of specimens of a brittle or quasi-brittle material usually exhibits a
significant size effect. That is, the material strength measured decreases evidently as the specimen size in-
creases. This size effect of such engineering brittle materials as concrete and rocks are caused mainly by their
heterogeneous microstructures due to the stochastic distribution of constituent phases and microdefects.
Using the effective field-subregion method presented above, the size effect of material strength associated
with interacting microcracks is examined here for otherwise homogeneous brittle solids.

2D rectangular plate specimens with length 2L and width L are taken as an example, as shown in Fig.
5(a). The boundary effect is disregarded in this paper, because the size of specimens is assumed much larger
than the average length of microcracks. In such a case, the interaction of disordered microcracks is the main
reason for the size effect of specimen strength. According to the effective field-subregion method, only when
a microcrack is far from the boundary of a subregion Q, can its stress intensity factors be calculated exactly.
Therefore, a sufficient large number of subregions are chosen such that each microcrack is near the center of
a subregion.

For a mixed-mode crack in a brittle solid, the energy release rate theory developed initially by Griffith is
often taken as the controlling parameter of crack growth. Accordingly, the mixed-mode fracture criterion
may be written as (Kanninen and Popelar, 1985; Feng and Yu, 2002)

K >2 <KII )2
G=(2L) (L) 13
<KIC Knc (13)
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Fig. 5. (a) A specimen with randomly orientated microcracks, and (b) the size effect of specimen strength under tension.

where K7 and Kj; represent the mode-I and II SIFs, Kjc and K¢ their intrinsic critical values, respectively.
For simplicity, Kjc and Kjc are regarded as material constants without dependence upon microcrack
propagation. This is exact only for perfectly brittle materials, in which the release of internal energy due to
microcrack growth is entirely transformed into the increase in the surface energy of propagated micro-
cracks, that is, no other microscopic dissipation mechanism exists at crack tips. For actual materials, Kjc
and Kjic generally increase as a crack grows. This will weaken the size effect of material strength but is not
considered in the present paper. To emphasize the effect of microcrack interaction, furthermore, we assume
that Kjc and Ky are spatially uniform. For a heterogeneous matrix as in most actual materials, the spatial
fluctuation of Kjc and Kjjc can easily be accounted for in the present method by specifying different values
of Kjc and Kjc for different microcracks.

To determine the load-bearing capacity of a specimen, the far-field stress is denoted as 6., = ma”_, where
¢, is a reference stress tensor and m is a load factor. The mode-I and II SIFs at the two tips of the ath
microcrack subjected to the reference stress ¢° are calculated by using the method in Section 2 and
designated as Kjj(£/,) and Kjj,(+/,), respectively. Thus, the oth microcrack will undergo an unstable
propagation at one of its two tips when the load factor m reaches the following value:

, 5 ) 7172 , 5 ) 57172
—— (Klo(lx)) i (Kno(loc)) 7 (Klo(_la)) i (Kno(_lx)) . (14)
Kic Kic Kic Kue

The specimen strength is defined as the applied stress a. at which any one of the microcracks starts to
propagate. That is,

6. = mcago, (15)
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where the critical load factor m, is the minimum value of m, among all the microcracks:
m, =min{m,, o =1,2,... N} (16)

For instance, consider rectangular specimens with length 2L and width L, subjected to uniaxial tension in
the x,-direction. Take the following material parameters for the matrix: the Young’s modulus £ = 0.35 x
10° MPa, the Poisson’s ratio v = 0.3, the critical SIFs Kjc = 0.165 MPam'/? and Kjc = 0.330 MPam'/2,
and the number density of microcracks n. = 2500 m~2. The sizes of microcracks satisfy the same normal
distribution law @(/) as in Section 2.4.

The orientations, sizes and locations of microcracks in each sample of specimens are specified by a
computer program according to their probabilistic density distribution functions. Several samples of the
same size are randomly produced, and their strengths are calculated respectively. Specimens of different
sizes are considered by varying the parameter L in order to verify the size effect of strength. Each specimen
may contain microcracks of a great number, say, 5000. If the direct interaction of all these microcracks is
calculated, one has to solve a system of 10000 equations, each of which has interactive terms (or trans-
mission A-factors) of a very large number (about 1.2 x 107). Evidently, such a calculation is very difficult,
and, in fact, it is also unnecessary. By using our present method, however, if a subregion contains 100
microcracks, one needs to solve only a system of 200 equations, each having less than 5000 interactive
terms. As the total number of microcracks increases, the computation time increases proportionally, in-
stead of exponentially.

Two cases of orientation distribution of microcracks are considered. In the first case, all microcracks are
uniformly randomly oriented (Fig. 5(a)). The fracture stress averaged from multiple samples of the same
size is plotted in Fig. 5(b) as a function of the specimen size. In the second case, all microcracks are aligned
along the x;-axis (Fig. 6(a)). The corresponding changing curve of the critical stress with respect to the
specimen size is shown in Fig. 6(b). In both the cases, significant size effects of material strength have been
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Fig. 6. (a) A specimen with parallel microcracks, and (b) the size effect of specimen strength under tension.
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observed. The dispersion of the calculation results in the case of parallel microcracks is more pronounced
than that of randomly oriented microcracks. This is physically reasonable because aligned microcracks are
easier to coalesce than randomly orientated microcracks, or in other words, the interaction of aligned
microcracks is stronger. It is seen that the particular statistics of microcracks dictates the failure and the
associated size effect of brittle solids. The critical condition may fluctuate significantly depending upon the
actual arrangement of the crack array.

It is also found from numerical calculations that as a consequence of interaction, a minority of mi-
crocracks are closed when a uniaxial tensile stress is applied. Interaction of closed microcracks can be
considered in the calculation, as will be shown in the next section. However, no observable influence of
closed microcracks has been found in our numerical results on the tensile strength of specimens. This is also
reasonable because the load-bearing capacity of a brittle material exposed to tension is associated mainly
with the fracture of open microcracks. Therefore, closed microcracks are assumed to be inactive, and their
effect is negligible in the case of tension.

4. Size effect under compression

In this section, the size effect of material strength caused by microcrack interaction is further studied in
the case of compression. Investigations on interaction of closed microcracks are still very limited. Basista
and Gross (2000) extended Kachanov’s method to 2D crack interaction problems under compression.
Lehner and Kachanov (1995) analyzed the influence of interaction of frictional cracks on the stress-strain
relations for rocks in compression. Carpinteri et al. (1996) studied the size effects of strength of brittle
materials under compression using the boundary element method, including the coupling influences of
crack interaction, propagation and intersection. However, only a small number of cracks can be considered
by their method due to the cumbersome computation.

The effective field-subregion method presented in Section 2 can readily be extended to the case of
compression by considering the following aspects in calculation:

(1) the closure and frictional sliding of microcracks,
(i1) the effective elastic moduli M of the microcracked solid and the stress concentration tensor B, which
are different than those of tension, and
(iii) the fracture criterion of closed microcracks.

In the case of compression, the pseudo-tractions between the faces of a microcrack include three parts,
namely, the tractions induced by the far-field stress, their fluctuations due to microcrack interaction, and
the frictional forces. Thus, the normal and tangential tractions of the ath microcrack are expressed as

PE) =P+t (el (O] -,
BEu

(&) = 0> [(Fhe? (&) - m* — f4(8),

f7a

(17)

respectively, where 6%/(¢) denotes the induced stress at point ¢ of the oth microcrack when a uniform
tangential traction of unit intensity is loaded along the fth microcrack. The angle brackets stand for the
average of a variable over the crack face.

The maximum frictional traction between the faces of the ath microcrack is given by the Amontons
frictional law:

max = H(P"); (18)
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where p is the frictional coefficient. The driving force of frictional sliding is approximately expressed as
()g =07 (e (O] - m. (19)

If the driving shear traction (1*), is lower than the maximum frictional traction f? ., then there is no
relative displacement between the two surfaces of the ath microcrack, that is, this microcrack is inactive and
makes no contribution to the SIFs of other microcracks. Frictional sliding occurs in the ath microcrack
when the average shear traction (t*), reaches f .

In the case of uniaxial compression in the x,-direction, frictional sliding occurs in the microcracks with
orientations in the following range:
T
E )
with 0y = tan~! i, and all other microcracks are inactive. Then following the calculation scheme for closed
microcracks in Yu and Feng (1995), the effective Young’s modulus £ and Poisson’s ratio v under uniaxial
compression are obtained readily as

0, <0< (20)

1 : -
E=E, [1 + gncaz(l — sin’ 0y — ucos’ Of)] ,

: | (21)
2 -3 3
=— —nea (1 — 0r — 0)|.
v i {v0+3na( sin” Op — ucos f)}

Then the stress concentration tensor B can be determined from Eq. (2) in conjunction with (4) and (21). It

should be noted that the effective elastic moduli in Eq. (21) and the corresponding B tensor can be used only

in the case of uniaxial compression, because they are not constants but depend on the compressive stress

state.

For a closed microcrack, K; = 0 and then the following fracture criterion is adopted:

KH = Knc. (22)

Similarly to Section 3, the far-field stress is expressed as —¢,, = —ma",, where —¢”_ is a reference stress

o0

tensor and m is a non-dimensional load factor. The critical load factor m, is also defined as that when the
first microcrack propagation occurs.

3.5+
3.0
N
. +
—~ + +
£ 25 * * ¥ % t
] : i
0” T +
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1.5 v T T T T T T 1
0.0 02 0.4 0.6 038
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Fig. 7. The size effect of material strength under compression.
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Consider again rectangular specimens of length 2L and width L, subjected to uniaxial compression in the
xy-direction. The material constants of the matrix are taken the same as those in Section 3. The frictional
coefficient is taken as p = 0.12, and the number density of microcracks n, = 1225 m~2. Their sizes satisfy
the same normal distribution as that in Section 3. It is found that due to interaction, some microcracks are
open in the case of uniaxial compression. They are also considered in our calculation by using the method
in Section 3. In the case of uniformly random orientation of microcracks, the dependence of the material
strength on the specimen size is shown in Fig. 7. It is evident that the size effect in compression is less
pronounced than that in tension. This is because some microcracks become inactive and the microcrack
interaction is weakened due to friction. Again, it is found that the failure and the associated size effect of a
brittle solid depend strongly on the statistics of microcracks.

5. Numerical calculation for effective elastic moduli of microcracked solids

As mentioned in the introduction, various micromechanics schemes have been established for esti-
mating the effective moduli of an elastic matrix containing many dispersed microcracks. Such methods as
the SCM, the GSCM, the DM, the MTM and the IDD method have been well reviewed and recapi-
tulated by Kachanov (1993), Nemat-Nasser and Hori (1993), Krajcinovic (1996), Yu and Feng (1997),
Zheng and Du (2001), and many others. To date, however, estimation of effective elastic moduli of mi-
crocracked solids is still a problem of extensive arguments. On one hand, the accuracy and the validation
scopes of these established methods are yet to be evaluated further, and then it seems still a puzzling issue
to determine which method should be employed for a specific problem. On the other hand, there is a lack
of experimental data (Carvalho and Labuz, 1996) available in the literature for effective moduli of mi-
crocracked solids, especially for those with high concentration of microcracks. Therefore, it seems a
promising approach to evaluate the accuracy of these micromechanics schemes via numerical methods.
However, little work of direct numerical analysis has been conducted on this subject because of the
lack of effective computational methods for treating microcracks of a large number or of high concen-
tration.

The effective field-subregion method presented in Section 2 is now adopted to calculate directly the
Young’s moduli of rectangular specimens containing up to thousands microcracks, as shown in Fig. 5(a).
The average strain ¢; of a specimen subjected to uniform tensile stress o;; on the boundary is amenable to
an additive decomposition as

&y = & + &, (23)
where sg. and ¢}; denote the average strain tensor of the elastic matrix and its increase due to all the micro-
cracks in the specimen, respectively. Assuming the matrix isotropic, ef’j and ¢&j; can be obtained by

[(1 + Vo)(éikéﬂ + 5i15jk) — 2V0(Sij5k1]0';7, (24)

1
0 _ 0o
&y = Mijuoyy = 2E,

N
) e

respectively, where BE“) denotes the average opening displacement vector of the ath microcrack. Once the
pseudo-tractions on the ath microcrack have been determined from the method in Section 2, its normal and
tangential opening displacements can be given by
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() _ Ttls

b = 3 [cos 0,(t*) — sin 0, (p")],

(26)

S

= %l“ [sin 0, (t*) + cos 0, (p”)].

Thus, the average strains and thereby the effective moduli of a microcracked specimen can be deter-
mined. For the two cases of completely random orientation and aligned orientation of microcracks, the
numerical results are shown in Figs. 8 and 9, respectively, in comparison with the experimental data of
Carvalho and Labuz (1996), the numerical results of Kachanov (1993), as well as the analytical results
obtained from the non-interacting approximation (or the dilute concentration method, DCM), SCM, DM,
IDD and the method suggested by Feng and Yu (2000). Because each specimen has a very large number of
microcracks (e.g., up to six thousands), no evident difference has been observed among the numerical re-
sults of different specimens with microcracks of the same distribution, as is contrary to the high dispersion
of strength. As expected, the effective Young’s modulus exhibits almost no size effect provided that the
specimen is large enough to contain a sufficient number of microcracks. It is also found that the direct
interaction of microcracks in the subregion also influences the effective elastic modulus evidently, that is,
neglecting the interaction of microcracks in 2 may lead to a considerable error in effective elastic moduli.
But in comparison with the SIFs, the effective elastic modulus shows a weaker dependence on the subregion
dimension.

In addition, it is seen that the numerical estimates agree well with the experimental data of Carvalho and
Labuz (1996), and the analytical results of the DM, IDD, and Feng and Yu’s method. Especially, it is
evident that the difference between the numerical calculation and the IDD prediction is very small even at
very high concentration of microcracks. The estimates of DCM and SCM are satisfactory only when the
scalar microcrack density is very small (e.g., less than 0.1). For comparison, Kachanov’s calculation results
(Kachanov, 1993) are also given in Figs. 8 and 9. For randomly oriented cracks, his solution agrees very
well with the non-interacting approximation. For parallel cracks, his estimate for the effective Young’s
modulus is a little higher than the non-interacting solution. Kachanov (1993) attributed this slight stiffening
effect to the dominance of the shielding effect of microcracks. Except under dilute concentrations, however,
our present numerical solutions for effective elastic moduli are evidently lower than the non-interacting
approximation in both the cases of microcrack orientations. The present scheme, though based partly on

1.0
Present solution
- - - - Non-interacting approximation
e Self-consistent method
0.8 F W ------ Differential method
R T IDD method (Zheng and Du, 2001)
SNy | Feng and Yu's solution (2000)
| Kachanov's solution (1993)
0.6 = Experimental data of Carvalho and Labuz (1996)
S8}
-
[
04
02
0.0
0.0

Fig. 8. Comparison of the effective Young’s modulus of a 2D solid containing microcracks of completely random orientations.
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Fig. 9. Comparison of the effective Young’s modulus of a 2D solid containing aligned microcracks.

the Kachanov method, leads to results at variance with those of Kachanov (1993). This is attributed to the
contribution of the cracks in the complementary region S — Q. On one hand, further experimental evidence
will be of great interest for examining the accuracy of these solutions. On the other hand, Zheng and Du
(2001) proved in a strict way that the IDD method has a high accuracy even for high concentration of
microcracks. This seems an indirect evidence for the good accuracy of the present solution. Therefore, the
method presented in Section 2 provides a useful tool for evaluating various micromechanics methods for
the effective elastic moduli of microcracked solids.

6. Conclusions

The deformation and failure behaviors of such brittle materials as ceramics and concrete are rather more
than often associated with interacting microcracks. The effective elastic moduli of microcracked solids
depend mainly on the statistically average effects of microcrack interaction, while the fracture and failure
properties of materials are sensitive to higher-order effects of microcrack interaction. Therefore, it is of
interest to assess quantitatively the effects of microcrack interaction from the viewpoint of micromechanics.

An approximate method is presented here to calculate the interaction of microcracks of a large number.
To determine the SIFs of a microcrack, the microcracked solid is divided into two regions, which are dealt
with in different ways. The interacting microcracks within an elliptical region around the considered mi-
crocrack are calculated directly by using Kachanov’s interaction method, while the influence of other
microcracks is reflected by modifying the far-field stress. This simplified scheme yields a satisfactorily accu-
rate estimate of stress intensity factors.

This global/local method is first employed to analyze the size effect of strength of brittle specimens
containing numerous microcracks. Both the cases of tension and compression are considered. As another
example of its application, direct numerical calculations have been conducted for the effective elastic moduli
of 2D microcracked solids in order to provide a valuable numerical reference for evaluation of various
micromechanics methods. Some further potential applications of this method include the simulation of the
failure process of microcrack-weakened materials, the transmission from distributed evolution of damage
to damage localization, the behavior of microcrack clusters, and so on. Though the method is presented
only for 2D problems in this paper, its 3D extension is of considerable interest.
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Appendix A. Kachanov’s method of microcrack interaction

For completeness, Kachanov’s method of microcrack interaction is reviewed very briefly here. For
more details, the reader is referred to Kachanov (1987, 1993). According to the superposition principle
of elasticity, the problem of a linear elastic solid containing traction free cracks and subjected to a
uniform stress 6., on the boundary is equivalent to the problem where the traction stress t* = —n” - 6, is
applied to the crack faces and the boundary of the solid is traction free, in the sense that they lead
to identical results for the stress intensity factors of all microcracks. The latter problem is further con-
sidered as a superposition of N subproblems each containing one crack subjected to pseudo-tractions
as yet unknown. Accounting for microcrack interaction, thus, the tractions along the ath crack are
given by

(&) =t +n"- ) 6(0), (A1)
BAa

where 6%/ (¢) denotes the stress tensor induced by the Bth crack at point ¢ along the ath crack.

In the approximate method of Kachanov (1987), the key assumption that results in a major simplifi-
cation of the problem is that the tractions in Eq. (A.1) are averaged over the ath crack, and denoted as (t*).
This means that the impact of the traction fluctuation t*(¢) — (t*) along the ath crack on other cracks
is neglected. This method leads to a satisfactory accuracy of the SIFs except in some cases, e.g., two mi-
crocracks perpendicular to each other and very small in spacing.

Let 6%/ (&) and 6%(&) denote the stresses generated at position ¢ along the ath crack when the fth crack is
subjected to a unlform normal traction and a uniform tangential traction of unit intensity, respectively.
Thus, the normal and tangential pseudo-tractions on the ath crack are simplified as

P& =pl+0* D e (@) + 6 () ()] -,

=

?(Q) =0 Y [ + ()] m,

f#a

(A.2)

respectively, where m” is the unit vector along the ath crack (Fig. 2), the angle brackets stand for the av-
erage of a parameter over the crack surface.

Averaging Eq. (A.2) over the ath crack, a system of 2N linear algebraic equations with respect to
(") = (p*)n* + (7*)m”* can be obtained as

=Pl + Y ) + A,
B
(A.3)
_ T + Z Aaﬁ + Azy/f< >]
B#a

where the transmission A-factors characterize the attenuation of the average normal and tangential trac-
tions in transmission of stresses from one crack to another (Kachanov, 1987). After the average tractions
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(t*) have been solved from this system, the pseudo-tractions t*(¢) can be determined from Eq. (A.2), and
then the stress intensity factors of the interacting cracks can be determined from Eq. (12).
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